Scholarship
Scholarships

Facebook Fellowship Program 2019, Eligibility, Application, Dates

Facebook Fellowship Program 2019: The Facebook Fellowship Program and Emerging Scholar Awards are designed to encourage and support promising doctoral students who are engaged in innovative and relevant research in areas related to computer science and engineering.

Winners of the Fellowship are entitled to receive two years of tuition and fees paid, a stipend of $37,000 each year, and up to $5,000 in conference travel support.

Applications will be evaluated based on the strength of the student’s research statement, publication record, and recommendation letters.

Check out more Scholarships

While open to students in any year of PhD study, a heavy emphasis on research and publication record for Facebook Fellowships favor students who are further along in their course of study.  Applicants who are earlier in their career and fit the criteria of a minority group that is traditionally under-represented* in the technology sector have the option of being evaluated for an Emerging Scholar Award.

The 2019 Facebook Fellowship application is now open and closes on October 12, 2018 at 11:59 pm PST. Click the button below to apply.

Facebook Fellowship Eligibility Criteria

Full-time PhD students who are currently involved in on-going research who are enrolled in an accredited university in any country

Students work must be related to one or more relevant disciplines (see research areas below)

Students must be enrolled during the academic year(s) the Fellowship is awarded

First or second year PhD students who fit the criteria of a minority group that is under-represented* in the technology sector have the option of being evaluated for an Emerging Scholar Award.

Facebook Fellowship Award Includes

Tuition and fees will be paid for the academic year (up to two years/four semesters)

$37K grant (one-time payment during each academic year)

Up to $5,000 in conference travel support

Paid visit to Facebook headquarters to for the annual Fellowship Summit

Facebook Fellowship Applications Must Include

250-word research summary which clearly identifies the area of focus, importance to the field, and applicability to Facebook of the anticipated research during the award (reference the research areas below)

Resume or CV, with email, phone and mailing address, and applicable coursework noted

2 letters of recommendation to be uploaded with your application. Please provide reference email addresses, and one reference must be from an academic advisor.

Also Check more Phd Admissions

Facebook Fellowship Research Areas

Applications will be accepted from students with research related to one of the following areas:

Applied Statistics: We would like to support students who are working on novel techniques in statistical modeling and inference. Areas of research include but are not limited to inference in high dimensionals, causal inference, graphical models, sparsity and compressed sensing, pattern recognition, change detection, forecasting and time series analysis, optimization, regression, classification, clustering, graph partitioning, entity linkage and entity deduplication. Applications of interest include but are not limited to user modeling, detecting violations, experimentation, surveys or efficient sampling.

Also READ  Chevening Scholarship Programs 2018 in India | Scholarship in India

AR/VR Photonics and Optics: We would like to support students that are excited about developing technology in Photonics and Optics that can be applied to VR and AR visual systems. Topics of interest include functional planar optical elements, highly efficient light sources, optical and photonic imaging devices, unique optical materials and structures.

Computational Social Science: We would like to support students who are working on advancing research in the social sciences with computational approaches. Topics of interest include but are not limited to algorithmic fairness and bias correction, norms and trust, political participation, information cascades and influence, graph partitioning and community discovery, location aware social networks and mobility, theoretic and practical models and analysis of social networks, computer-mediated communication in dyads and groups, social processes after natural disasters and crises, well-being, social support, and mental health support.

Computer Vision: We would like to support students who are working on advancing the state-of-the-art in computer vision. Topics of interest include but are not limited to image and video recognition (classification, detection, and segmentation), vision and language (visual question answering and visual dialog), visual reasoning (forward prediction, understanding physics, and understanding affordance), large-scale and weakly supervised learning, and understanding humans (pose estimation and action recognition).

Compute Storage and Efficiency: We would like to support students who are working on novel techniques for improving the efficiency of large scale systems such as databases, file systems, caching systems, pub/sub systems. This includes novel exploring techniques to shift computation, memory and storage with the goal of optimizing power consumption and/or cost.

Distributed Systems: We would like to support students working on a broad set of topics related to all kinds of distributed systems, including but not limited to fault tolerance, reliability, system management, scale, performance, efficiency, and security.

Economics and Computation: We would like to support students who are passionate about using mathematical and computational tools from the areas of game theory, optimization, operations management and econometrics. Topics of interest include but are not limited to theoretical and applied research that could help improve the design of mechanisms used to auction ads, optimize network infrastructure usage and processing power, improve processes such as procurement, hiring, and quality control, and understand the underlying processes, behaviors or incentives that align with real world observations.

Also READ  University of Queensland Australia MBA Scholarships 2016

Hardware and Software Infrastructure for Machine Learning: We welcome applications from students working on interdisciplinary research to support machine learning at scale. Research topics of interest include, but are not limited to, hardware and software techniques to improve machine learning inference and training in the datacenter or at the edge. Examples of projects include research targeting machine learning hardware specialization, compiler technologies for deep learning platforms, and techniques for distributed training/learning. We are also interested in research focused on workload characterization and performance analysis of real-world machine learning applications.

Machine Learning: We would like to support students who are working on advancing the state-of-the-art in machine learning. Topics of interest include but are not limited to reinforcement learning, deep learning, causality, non-convex optimization, multi-task learning, curriculum learning, learning embeddings and metrics, speech recognition, cost-sensitive learning, and structured prediction.

Natural Language Processing: We would like to support students with topics of interest that include: machine translation, multilingual learning, representation learning, named entity recognition, text classification, semantic parsing, summarization, dialog systems.

Networking and Connectivity: We would like to support students active in the research and development of scalable, fast, reliable, and efficient systems across all areas of networking, including: different wired/wireless network domains such as data centers, backbones, peering, mobile core/ backhaul, and access across many different parts of the spectrum (wifi to mmwave to optical); the whole stack, from chip/interface/system hardware design to low-level firmware to distributed systems; and the whole network lifecycle, from planning/design, to provisioning/deployment, to monitoring / troubleshooting / visualization, to control stacks.

Programming Languages: Applications are welcome from students who are interested in the design and implementation of programming languages and related tools. Topics of interest include, but are not limited to: type systems, static analysis, optimizing compilation, runtimes, formal specification and verification, and high-level support for features such as concurrency, data privacy, control of side effects, and probabilistic and differentiable programming.

Security/Privacy: We would like to support students with established proficiency in the field and passion about solving complex security challenges. Topics of interest include but are not limited to: systems, software, and network security; privacy; cryptography; malware; abuse detection and mitigation; IoT security; authentication and authorization.

Spoken Language Processing and Audio Classification: We would like to support students working in speech and audio processing, particularly those advancing the state of the art in human-computer interaction, human-human interaction, and video content understanding. Topics of interest include but are not limited to speech recognition and synthesis, spoken language understanding, dialog systems, auditory scene analysis, acoustic event detection, audio-visual modeling and sentiment analysis.

Also READ  Harry Ransom Center Research Fellowship 2018, Application, Dates

UX/Instagram Well-being: We would like to support students who are working on understanding how online communities and technology use play a role in well-being. This includes, but is not limited to, research on how emotional affect, mental health, resilience, social support or other aspects of well-being relates to use of or participation in online communities, social media or technology more broadly.

Research outside the above: relevant work in areas that may not align with the research priorities highlighted above.

*For the purpose of the Emerging Scholar Award, “under-represented minority group” is considered to include persons who identify as: Black or African American, Hispanic or Latino, Native American or Alaskan Native, Native Hawaiian or Pacific Islander.

Facebook Fellowship Frequently Asked Questions

Question: How do I apply?

Answer: The 2019 application will open September 4, 2018.

Question: Are students studying outside of the United States eligible to apply?

Answer: Yes. The fellowship is open to students at all universities both in the United States and in other countries.

Question: Do I need to be a PhD student to be eligible to apply?

Answer: Yes. You must be enrolled in a PhD program to apply for a Facebook Fellowship.

Question: When does the Facebook Fellowship award start?

Answer: The award funds are delivered during the Fall term of the awarded year(s) and conclude at the end of the Spring semester. All award monies and benefits must be collected before the end of the Spring semester of the final year of the fellowship.

Question: If I only have 1 year left of school, can I still apply?

Answer: Yes, you may still apply. You will just receive the tuition and stipend while you are in school.

Question: I am a Facebook AI Resident student, do I qualify for a Facebook Fellowship?

Answer: No, Facebook AI Resident students are ineligible for a Facebook Fellowship.

Question: I can save but I can’t submit my application, what should I do?

Answer: If your application won’t submit, please review to ensure you have filled out all required fields as well as uploaded both documents (your research summary and your CV). If you are still having difficulties, please save your application and double check that you do not have the Facebook app open on multiple devices. Once closed out of all instances, please return to the application and submit.

Facebook Fellowship Program 2019, Eligibility, Application, Dates
Rate this post


Get Latest Updates via SMS & Email by entering..


Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.